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Background and Introduction

= This presentation describes work performed under a Cooperative Research and
Development Agreement (CRADA) between Argonne National Laboratory and the Central
Research Institute of Electric Power Industry (CRIEPI), Japan.

= This presentation includes results published in 2 NED journal papers in 2021

— Monitoring of helium gas leakage from canister storing spent nuclear fuel: Radiological
consequences and management, Nuclear Engineering & Design 382 (2021) 111391.

— RAMM-TM for detection of gas leakage from canisters containing spent nuclear fuel, Nuclear
Engineering & Design 385 (2021) 111534.

= Aging management — detection of aging effects — inspection and monitoring

= Qutline of Presentation
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Ageing Management - Inspection/Monitoring

» Periodic inspection of selected canisters
« Mitigation & repair (M/R), if CISCC

indication found ‘
« Costly and labor-intensive

Periodic
Inspection

Continuous monitoring of many canisters
M/R before exceeding allowable leakage rate
Cost-effective and reduce risks to public
safety, health, and environment.
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Canister Helium Leakage Detectlon Methods
TT Method

Temperature difference between TLB

ATBT Method
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1/4.5-Scale Model Cask

« Based on T-H similarity law with independent control of test parameters
— Decay heat load (up to 90 years of dry storage)
— Fill-gas (air and helium) and pressure (up to 6 atm)
— Instrumentation (power, pressure, and temperature)
— Controlled leakage path (size of simulated CISCC crack) and start of leakage
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Evaluation of Leak Detection by ATBT Method

1/4.5-Scale Cask Model TT, TB vs. Pressure Leak Amount Ratio vs. ATBT
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The actual temperature can be
calculated from the test results by the
transform expression.
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Actual Canister Evaluation

« Correspond to 10kW(Actual canister)
= Correspond to 5kW(Actual canister)
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Gas Leakage Path and “Simulated” CISCC Crack

Small-diameter pipelet with
varying lengths

ANSI N-14.5 volumetric leakage rate
I—u = (Fc + Fm) (Pu - Pd) (Pa/Pu)
F.=[2.49 X 10° D%/ (a W)

F_=[3.81 X 103 D3 (T/M)°5)/ (a P,)

& =250 um
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CISCC “equivalent” pinhole diameter of 45.8—47.1 um can be derived assuming crack length =
wall thickness (e.g., 0.5 in.) of MPC of actual dry storage system
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Remote Area Modular Monitoring (RAMM) for
Temperature Measurement (RAMM-TM)

Functional Block Diagram of RAMM
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RAMM-TM Data Flows during Gas Leakage
Experiment

Data sharing between Argonne (Chicago) and
CRIEPI (Tokyo) in real time
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Web Application User Interface and “Virtual

Sensors” (analytical functions of data measured by physical sensors —i.e., TCs)

Unit: 3001
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Gas Leakage Depressurization, ATBT, and Alarms
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STAR-CCM+ simulation [395W/He; (a): 6 atm/(b) 1 atm]

Temperature (C)
113.00

Temperature (C)

I E E IHJ‘DG [ | - K 1 ]
93.800 93.800 ‘
74.600 | 74.600
|554m ] ] Iss.ma
26200 1 ] 136.200
- L
| — 17.000
h7.000 l__ |
() (b) (a) (b)

Each simulation employed ~5 million elements, executed on 32-core parallel machine at
Argonne’s Laboratory Computing Research Center (LCRC).

Based on study of residuals of energy, continuity, X-, Y-, and Z- momentum, and turbulence
T4 (vortex) and T,, (kinetic energy), convergence was achieved after 18,000 iteration steps
with 3.1 s/step.
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STAR-CCM+ Simulation vs. Temperature
Measurement in 1/4.5-Scale Model Cask (394W/air)
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Radiological Consequences of Gas Leakage
(Pressure Drop) due to CISCC (Scenario 1)
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Reproduced from Ref. S.CHU,
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Radiological Consequences of Gas Leakage
(Pressure Drop) due to CISCC (Scenario 2)
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Conclusions

» Both helium and air gas leakage from a canister were detected within hours
after the start of the leakage. The change in ATBT during gas leakage
(depressurization) triggered automatic alarms, providing a sound basis for
early detection of gas leakage from the canister.

» This methodology would allow consequence management through the
implementation of mitigatory actions to continue effective aging management
and to reduce risks to public safety, health, and the environment.

» Additional gas-leakage experiments are being conducted to explore the use of
multiple “Virtual Sensors” for gas-leakage detection and for confirmation of
gas leakage in actual spent-fuel canisters.

» STAR-CCM+ simulation of temperatures, density, and flow fields inside and
outside the canister will continue to deepen the understanding of gas leakage
and thermal response in actual MPCs of spent-fuel dry cask storage systems.
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Current Status of Spent Fuel Storage
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